Antriebsbatterie
Eine Antriebsbatterie (auch als Hochvoltspeicher, Traktionsbatterie oder Zyklenbatterie bezeichnet) ist ein Akkumulator, der primär dazu bestimmt ist, die für den Vortrieb sorgenden Elektromotoren in Elektrofahrzeugen mit elektrischer Energie zu versorgen.
Dazu zählen auch die Puffer-Batterien in Brennstoffzellen-Fahrzeugen und bei Hybridantrieben.
Sie besteht aus mehreren zusammengeschalteten Elementen (daher „Batterie“) und aus wenigen bis Tausenden parallel und seriell zusammengeschalteten Akkumulator-Zellen oder Zellenblöcken.
Bei Elektroautos sind Nennspannungen von mehreren Hundert Volt Gleichspannung (daher auch die Bezeichnung Hochvolt-Speicher), die in einer gewissen Relation zu den üblichen elektrischen Spannungen in Dreiphasenwechselstromnetzen stehen können, durchaus gängig. Höhere Batterie-Nennspannungen (oberhalb von 400 Volt, hineingehend bis in den Bereich von 1000 Volt Gleichspannung) sind in batterieelektrisch angetriebenen High-Performance-Autos ebenso wie in Batteriebussen keine Seltenheit. Für Pedelecs und Elektromotorroller sind Spannungen von 24, 36 und 48 Volt üblich. Bei Gabelstaplern und anderen Flurförderfahrzeugen mit Elektroantrieb werden häufig Bleibatterien mit 80 Volt Nennspannung eingesetzt, die zugleich dem Gewichtsausgleich dienen und oftmals als Traktionsbatterien (Batterien für Traktionsanwendungen) bezeichnet werden.
Verbraucher wie Licht, Scheibenwischer, Radio, Fernbedienung usw. werden bei Elektrofahrzeugen üblicherweise nicht aus der Hochvolt-Antriebsbatterie versorgt, sondern durch ein übliches 12- oder 48-Volt-Bordnetz mit kleinem elektrischem Energiespeicher ähnlich der Starterbatterie in herkömmlichen Kraftfahrzeugen. Während Starterbatterien mit der Karosserie verbunden sind („Minuspol an Masse“), werden Antriebsbatterien mit höherer Spannung in Kraftfahrzeugen isoliert zur Karosserie eingebaut.
Antriebsbatterien von Elektro- und Hybridfahrzeugen gehören nach dem Batteriegesetz zur Klasse der Industriebatterien und nicht zur Klasse der Fahrzeugbatterien.
Die mobile Anwendung der Antriebsbatterien bedingt höhere Sicherheitsanforderungen im Vergleich zur stationären Verwendung. So muss vor allem die Sicherheit bei mechanischen Einwirkungen nachgewiesen werden. Erreicht wird dies durch Verwendung sicherer Zellchemien (beispielsweise Lithium-Eisenphosphat-Akkumulatoren) mit oft schlechteren elektrischen Kennwerten, die sichere konstruktive Gestaltung der Unterbringung im Fahrzeug (beispielsweise crashgetestete Batterietröge im Unterboden) und auch eine Kombination beider Methoden. Wie stark der Einfluss der Sicherheitsanforderungen bei Antriebsbatterien ist, kann am Beispiel des verzögerten Produktionsstarts des Opel Ampera nachvollzogen werden. Grund war die (erst mehrere Wochen) nach einem Crashtest in Brand geratene Antriebsbatterie des baugleichen Modells Chevrolet Volt.
Da vollelektrische Fahrzeuge die gesamte elektrische Energie für die Fortbewegung speichern, kommen Akkuzellen mit hoher Kapazität zum Einsatz, um Platzbedarf und Gewicht für die benötigte Energiemenge zu minimieren. Aufgrund der notwendigen Kapazität der Batterie (Zell- bzw. Modulgröße) ist die Strombelastbarkeit der Zellen für die Entlade- und Ladevorgänge in der Regel gegeben. Auch erfolgt die Belastung gleichmäßiger und mit geringeren Strömen bezogen auf die Akkukapazität als bei Hybridfahrzeugen.
In Hybridelektrofahrzeugen ist der Hauptteil der Antriebsenergie in Form von chemischer Energie (Kraftstoff) mitgeführt. Die Antriebsbatterie hat eine deutlich kleinere Kapazität. Sie speichert elektrische Energie für die Fortbewegung und nimmt Rekuperationsenergie der Nutzbremse auf. Dafür werden Hochstromzellen eingesetzt, die trotz geringerer Kapazität die notwendige (oftmals kurzzeitige) hohe Strombelastung bei gutem Wirkungsgrad und der benötigten Lebensdauer realisieren können.
Die Nennkapazität ist die vom Hersteller unter festgelegten Kriterien zugesicherte, entnehmbare Energiemenge. Bei Kapazitätsvergleichen ist es wichtig, diese Kriterien zu beachten. So hat ein Akkumulator mit den Angaben 12 V / 60 Ah C3 eine höhere Kapazität als ein Akkumulator gleicher Baugröße mit Kennzeichnung C5 oder C20. Die Angabe Cx charakterisiert dabei die Entladedauer für die angegebene Kapazität in Stunden. Bei C3 können in drei Stunden gleichmäßiger Entladung 60 Ah entnommen werden, es sind also höhere Ströme möglich als bei C5 oder C20, was für den Einsatz als Antriebsakku wichtig ist, da die Ströme in der Praxis oftmals über diesen Messströmen liegen.
Bei hochbelastbaren Lithium-Ionen-Akkumulatoren hat sich die Angabe der Strombelastbarkeit im Verhältnis zur Kapazität durchgesetzt. Dabei bedeutet dann beispielsweise für eine Zelle 3,2 V 100 Ah bei Standardentladung mit 0,5 C (oder auch 0,5 CA), dass die Kapazität mit einem Entladestrom von 50 A ermittelt wurde. Üblich sind Kapazitätsangaben bei 0,5 C oder 1 C, wobei die zulässige Dauerbelastbarkeit durchaus 3 C oder mehr (im Beispiel bei 3 C also 300 A), die kurzzeitige Belastung noch deutlich mehr (hier 20 CA, also 2000 A) betragen kann. Hierbei sinkt jedoch die beim geringeren Strom ermittelte Kapazität.
Statt die Kapazität (Amperestunden) einer Antriebsbatterie bzw. deren Einzelzellen anzugeben, wird meist der Energieinhalt (Kilowattstunden) des gesamten Akkus angegeben. So sind auch unterschiedliche Bauarten miteinander vergleichbar, da die nur technisch wichtige Nennspannung herausfällt. So benötigen Starterbatterien nur einen Energiegehalt von 0,5…1 kWh, Traktionsakkus für Gabelstapler haben beispielsweise 4,8…28,8 kWh und der Toyota Prius II (Hybridantrieb) hat einen Akkumulator mit einem Energieninhalt von 1,3 kWh. Elektroautos haben zehn- bis hundertfach größere Akkumulatoren.
Im Betrieb kann nicht die gesamte Nennkapazität genutzt werden. Zum einen wird die nutzbare Kapazität bis zum Absinken auf die festgelegte Schlussspannung bei hohen entnommenen Strömen geringer, zum anderen bestimmt bei seriellen Verschaltungen die Zelle / der Zellblock mit der geringsten Kapazität die nutzbare Kapazität ohne schädigende Tiefentladung.
Die Zellen einer Antriebsbatterie weisen fertigungsbedingt sowie durch Nutzungseinflüsse auch immer Unterschiede in der Kapazität und Stromabgabe (innerer Widerstand) auf. Da dadurch im Betrieb die Zellen unterschiedlich belastet werden, kommt es zu einem Auseinanderdriften, was die nutzbare Kapazität der gesamten Batterie verringert. Während die Kapazität der besten Zellen nie gänzlich ausgenutzt werden kann, werden die schwachen Zellen regelmäßig überlastet, tiefentladen oder überladen. Auch um diese Effekte zu verringern bzw. zu vermeiden, werden bei modernen Antriebsakkumulatoren Balancer und Batteriemanagementsysteme eingesetzt. Auch tiefere Temperaturen verringern die Fähigkeit der Antriebsbatterie zur Abgabe hoher Ströme und verstärken den Peukert-Effekt, da sich generell die Beweglichkeit der Elektronen verringert. Um diesem Effekt entgegenzuwirken und da verschiedene Akkutechnologien bei tieferen Temperaturen unbrauchbar werden, sind Antriebsbatterien oft auch mit einer zusätzlichen Heizung ausgestattet. Diese übernimmt entweder während der Verbindung zum Stromnetz die Temperierung oder heizt sich aus ihrem Energiegehalt selbst. Dadurch und durch zusätzliche Verbraucher wie elektrische Innenraumheizung oder Klimaanlage verringert sich die winterliche Reichweite, obwohl der nutzbare Energiegehalt der Antriebsbatterie auch im Winter zur Verfügung steht.
Die Entladetiefe der Akkuzellen wird zugunsten der Lebensdauer oft durch das Batteriemanagementsystem (BMS) begrenzt, meist auf 60–80 % der Nennkapazität. Vor allem bei Verbrauchsberechnungen und Vergleichen von verschiedenen Antriebsbatterien müssen diese Umstände beachtet werden. Diese „Nutzkapazität“ wird vom Autohersteller selten ausgewiesen, sondern als nutzbarer Bereich der Nennkapazität beschrieben. So wird beim Chevrolet Volt bzw. Opel Ampera ein nutzbares Akkufenster von 30 bis 80 % angegeben, das sind (zugunsten der Haltbarkeit) lediglich 50 % der Nennkapazität von 16 kWh.
Plug in America führte unter Fahrern des Tesla Roadster bezüglich der Lebensdauer der verbauten Akkus eine Umfrage durch. Dabei ergab sich, dass nach 160.000 km die Akkus noch eine Restkapazität von 80 bis 85 Prozent hatten. Dies war unabhängig davon, in welcher Klimazone das Fahrzeug bewegt wurde. Der Tesla Roadster wurde zwischen 2008 und 2012 gebaut und verkauft.
Lithium-Eisenphosphat-Akkumulatoren, die als Antriebsakkus eingesetzt werden, erreichen nach Herstellerangaben mehr als 5000 Zyklen bei einer Entladetiefe von 70 %.
Das (vor 2019) meistverkaufte Elektroauto ist der Nissan Leaf, der seit 2010 produziert wird. Nissan gab 2015 an, dass bis dahin nur 0,01 % der Akkus wegen Defekt oder Problemen ausgetauscht werden mussten und dies auch nur aufgrund extern zugefügter Schäden. Dabei gibt es vereinzelt Fahrzeuge, die bereits mehr als 200.000 km gefahren sind. Auch diese hätten keine Probleme mit dem Akku.
Elektroautos wie Tesla Model S, Renault Zoe, BMW i3 usw. können ihre Akkus an Schnellladestationen innerhalb von 30 Minuten zu 80 Prozent aufladen. Im Juli 2013 kündigte Tesla an, dass die nächste Generation der Supercharger nur noch 5 bis 10 Minuten benötigen würde, was er innerhalb der nächsten Jahre in die Realität umsetzen wolle. Die Supercharger vom Stand 1. November 2016 haben in Europa eine maximale Ladeleistung von 120 kW und geben typischerweise 40 Minuten für eine 80-%-Ladung und 75 Minuten für eine Vollladung an.
Nach Angabe des Herstellers BYD ist der Lithium-Eisen-Phosphat-Akku des Elektroautos e6 an einer Schnellladestation innerhalb von 15 Minuten zu 80 % aufgeladen, nach 40 Minuten zu 100 %.
Schau mal hier: >>> Antriebsbatterie <<< - Dort wird jeder fündig.